Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.01 vteřin. 
Printed Biosensor Based on Organic Electrochemical Transistor
Omasta, Lukáš ; Mikula, Milan (oponent) ; Boušek, Jaroslav (oponent) ; Salyk, Ota (vedoucí práce)
Organic electronic devices arise as a suitable solution for bioelectronics sensor development, due to the good biocompatibility of organic semiconductors. So-called biosensors can convert electrochemical processes into an electronic signal. A matrix of such biosensors can simultaneously scan a number of biological samples or tissues of the living systems. The active part of the device is an Organic Electrochemical Transistor (OECT). In this work, the theoretical background on such device and its characterization, application in cell-based biosensors, methods of fabrication together with the current state of the art in the field of organic electronics are discussed. The experimental part contains specific manufacturing procedures of OECT devices development employed. The main emphasis is given on the ability of produced devices to detect response and monitor the stimulation of electrogenic cells. To this end, microplate patterns with a multielectrode array of OECTs based on the semiconductive polymer PEDOT:PSS was developed and fabricated using conventional printing methods (inkjet printing and screen printing). Standard lithographic procedures were also employed. The latest devices with the highest achieved signal amplification of g = 2.5 mS and the time constant of t = 0.15 s were produced. These are comparable or even better than some state of the art fully lithographically prepared ones.
Printed Biosensor Based on Organic Electrochemical Transistor
Omasta, Lukáš ; Mikula, Milan (oponent) ; Boušek, Jaroslav (oponent) ; Salyk, Ota (vedoucí práce)
Organic electronic devices arise as a suitable solution for bioelectronics sensor development, due to the good biocompatibility of organic semiconductors. So-called biosensors can convert electrochemical processes into an electronic signal. A matrix of such biosensors can simultaneously scan a number of biological samples or tissues of the living systems. The active part of the device is an Organic Electrochemical Transistor (OECT). In this work, the theoretical background on such device and its characterization, application in cell-based biosensors, methods of fabrication together with the current state of the art in the field of organic electronics are discussed. The experimental part contains specific manufacturing procedures of OECT devices development employed. The main emphasis is given on the ability of produced devices to detect response and monitor the stimulation of electrogenic cells. To this end, microplate patterns with a multielectrode array of OECTs based on the semiconductive polymer PEDOT:PSS was developed and fabricated using conventional printing methods (inkjet printing and screen printing). Standard lithographic procedures were also employed. The latest devices with the highest achieved signal amplification of g = 2.5 mS and the time constant of t = 0.15 s were produced. These are comparable or even better than some state of the art fully lithographically prepared ones.
Lift-off technology for thick metallic microstructures
Krátký, Stanislav ; Horáček, Miroslav ; Meluzín, Petr ; Kolařík, Vladimír ; Matějka, Milan ; Oulehla, Jindřich ; Pesic, Z.
This paper deals with a method enabling the preparation of thick metallic microstructures on metal substrates. Such metallic microstructures can be used as a resolution samples to characterize various microanalysis techniques, such as X-ray fluorescence (XRF) or X-ray photoelectron spectroscopy (XPS). Moreover, the\npatterned samples could be used as anodes to characterize focusing properties of X-ray tubes for micro CT systems. Considering that the standard lift-off technique is designated for structures with the thickness of several hundred nanometers at most, we had to modify lift-off technique to be possible to use it for preparation of very thick metal layers (several microns) with spatial resolution of a few microns. The mask with the desired pattern for UV exposure was prepared by e-beam lithography. SU-8 photoresist was used for a lift-off because of its aspect ratio ability, process purity and high resistance to heating. We used a thin layer of PMMA under the SU-8 masking layer to guarantee the photoresist would lift-off correctly. Thick aluminum layer was deposited by thermal evaporation. The dependence of metal layer thickness as a function of required exposed\nline width was determined. The final lift-off process was carried out in acetone ultrasonic bath. Generally, this technology can be used for the evaporate deposition of various materials with several microns thick layer in\nmicron resolution.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.